AFRL-IF-RS-TR-1999-147

Final Technical Report
July 1999

UNIVERSITY OF ILLINOIS ATLANTIS SUPPORT

University of Illinois

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. B129

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

e 19990907 129

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations. :

AFRL-IF-RS-TR-1999-147 has been reviewed and is approved for publication.

72 e / %g “z
APPROVED: “

JAMES R. MILLIGAN
Project Engineer

s

NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

FOR THE DIRECTOR:

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

UNIVERSITY OF ILLINOIS ATLANTIS SUPPORT

Simon Kaplan

Contractor: University of Illinois

Contract Number: F30602-94-C-0161

Effective Date of Contract: 15 June 1996

Contract Expiration Date: 14 June 1998

Short Title of Work: Atlantis - University of Illinois Support

Period of Work Covered: Jun 96 - Jun 98

Principal Investigator: Simon Kaplan
Phone: (217) 244-0392

AFRL Project Engineer: James Milligan
Phone: (315) 330-3013

Approved for public release; distribution unlimited. .
This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored
by James Milligan, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

Puhhcvepnmnghurdan forthls tiection of inf ion is st

2. REPORT DATE
Jul 99

1. AGENCY USE ONLY /Leave blank)

d to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the of i Send regarding this burden estimate or any other aspect of this collection of information, including suggestions for zeducing this burden, te Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Dffice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

3. REPORT TYPE AND DATES COVERED
Final Jun 96 - Jun 98

4. TITLE AND SUBTITLE

UNIVERSITY OF ILLINOIS ATLANTIS SUPPORT

6. AUTHOR(S}

Simon M. Kaplan

5. FUNDING NUMBERS

C - F30602-94-C-0161
PE - 62301E

PR - B129

TA -01

WU -01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign
Department of Computer Science

1304 W. Springfield Ave.

Urbana, IL 61801-2987

8. PERFORMING ORGANIZATION
REPORT NUMBER

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES)

AFRL/IFTD
525 Brooks Road
Rome, NY 13441-4505

Defense Advanced Research Projects Agency
3801 North Fairfax Drive
Arlington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-147

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James Milligan, IFTD, 315-330-3013

123, DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT Maximum 200 words)

computer-based solutions.

This project is concerned with developing next-generation collaboration frameworks. Progress in enhancing the usability of
collaborative systems hinges on improving our understanding of group work, and applying the resulting insights to the
development of collaborate work support frameworks. This work builds on the work of sociologist Anselm Strauss and his
notion of "social worlds" where a theoretical framework is applied in developing the Work Locales and Distributed Social
Worlds (wOrlds) collaboration system prototype, and the prototype is in turn used to validate and further enhance the
theoretical framework. The success of the wOrlds project perhaps can best be measured by the number of complex issues
that have been uncovered and the lessons learned in the projects attempt to support the work of distributed social worlds with

14. SUBJECT TERMS

Computer Supported Cooperative Work (CSCW), Collaboration Environments, Multi-User

15. NUMBER OF PAGES
52

16. PRICE CODE

Domain (MUD)
17. SECURITY CLASSIFICATION 18. SECURITY CLASS!FICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORY OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED _ UL

Standatd Form 298 %Rev 2-89 [EG)
Prescribed by ANS| Std, 2
Des:nnsd usrng Perform Pro, WHS/DIOR, Oct 84

Abstract

The wOrlds project is concerned with developing next-generation collaboration
frameworks. We strongly believe that real progress in enhancing the usability of
collaborative systems hinges on improving our understanding of work, and applying the
resulting insights to development of collaborative work support frameworks. We are
investigating the thesis that appropriate bases for such an approach can be drawn from
existing results in sociology, specifically the work of sociologist Anselm Strauss, and his
notion of social worlds. In this paper we motivate and overview wOrlds, the collaborative
environment we have built in order to explore our ideas and insights. We then critique
wOrlds (and, by implication, the class of systems known as MUDs of which it is a
member), and point to future directions for investigation.

1 Introduction

For the past several years we have been investigating collaboration frameworks that
provide support for the informal, cultural aspects of workaday activities as well as the
formal, structured aspects of work traditionally associated with workflow systems and
other ‘groupware’ tools. A major issue in this investigation is the identification of
theoretical approaches or models which can inform systems development and function as
“bridges” to the ethnographic investiSACgations of work situations currently popular
within the Computer-Supported Co-operative Work (CSCW) community. Recently, we
have focused on Anselm Strauss' notion of social world (Strauss 1993) as a theoretical
model that might address this issue.

Drawing on our prior experience with developing CSCW systems (Kaplan et al 1992), we
have constructed a CSCW support environment called wOrlds (Work Locales and
Distributed Social Worlds) (Fitzpatrick et al 1995) to evaluate our theoretlcal approaches
and investigate technologies for support of collaborative work.

In its current form, wOrlds has some similarity to a multi-media Multi-User Domain, or
MUD (Curtis and Nichols 1994). The multiple locales of wOrlds equate to MUD
“rooms” in which groups of people can manipulate shared objects and participate in
ongoing audio- and video-conferences. These support the informal aspects of work.
wOrlds also can be viewed as a media space (see Dourish 1993, Gaver et al 1995) with
sophisticated shared object and navigation facilities due to the pervasive use of
audio/video facilities throughout the system. Our initial intention, however, was not to
build a MUD (or media space for that matter), but to focus on supporting the activities of
social world members through networks of computers.

In this paper, we sketch the origins of the wOrlds‘project in its predecessor system,
ConversationBuilder, and briefly critique its failings and our move towards the notion of
social worlds derived from the work of sociologist Anselm Strauss.

1/2

We outline our current wOrlds system and the way in which we have interpreted social
worlds in the context of computer-based collaboration support. This support is provided
by the implementation of locales which support the interactions of social world members.
We then critique both the implementation of wOrlds and the concepts used to shape its
construction, with a view to identifying some significant open problems in the
construction of CSCW technologies and to point the way to possible solutions.

In critiquing our experiences with this system, we challenge the interpretation of the
spatial metaphor and propose a move away from space to place and from boundary to
centre, where both place and centre are defined from a social world perspective. We also
highlight particular problems and challenges in using existing distributed systems
infrastructure to support widely distributed collaborative work. The critique of the
existing wOrlds system is used to motivate design directions for its successor system,
Orbit.

Given the obvious overlap between the current implementation of wOrlds and many
MUD-based and media-space collaboration systems, we believe this critique, and the
theoretical motivations for which we argue, to be relevant to many systems besides our
own.

Finally, we end with a discussion of related work and our conclusions.
2 ConversationBuilder background and motivation

This work grows out of our earlier work on flexible workflow support through a system
called ConversationBuilder (Kaplan et al 1992). ConversationBuilder allowed users to
describe a wide range of collaborative activities using a protocol specification language
loosely based on Speech Acts (Winograd and Flores 1986). The resulting system was
used to specify many collaborative activities from asynchronous business processes and
softwarée development processes to a complete software development environment.

While ConversationBuilder worked well, it only allowed users to specify the formal
aspects of collaborative work. Robinson (1991) has argued that work takes place on two
levels simultaneously - a formal level, which emphasizes the manipulation of the artifacts
which are an integral part of most work processes, and a cultural level, where the
informal aspects of work are played out. These levels are inseparable, each shaping and
informing the other. Thus, a primary weakness of the ConversationBuilder system was
our failure to take account of the double-level aspects of work.

With the wOrlds project we set out to build a system that affords support for work
contexts in all their multifaceted richness, both formal and cultural. One of the major
issues we had to face was the identification of appropriate theoretical models of work and
workgroups. (‘Afford’ and ‘affordance’ are terms drawn from Gibson (1979), and refer to
the facilities an environment provides to facilitate the activities of an animal.)

In ConversationBuilder and other workflow systems, (Swenson 1993, Medina-Mora et al
1992, Kogan 1993) actions are the primary building blocks. A workflow system is
constructed by specifying the actions that may be performed and (sometimes) the artifacts
that are to be manipulated by those actions. Strauss argues convincingly that the actions
performed by workers continually vary as workers adapt their activities because of the
situated and contingent nature of their work. Thus using actions as a basis for the
“codification” of work will be doomed to fail.

Yet, computer programs require that at least some features or assumptions of the system
they implement be fixed. We therefore had to identify the key theoretical concepts which
we would fix as part of our systems building work. We decided to employ Strauss’
concept of social worlds as the basis for our investigations. Detailed motivations and
overview of Strauss’ theories and concepts can be found in (Fitzpatrick et al 1995).

Strauss’ social worlds model provides a rich and multifaceted way of understanding the
structure and dynamics of groups. In brief, a social world is defined as a group of
individuals (or groups), bonded by a common (and possibly implicit) purpose, and
bounded by the limits of effective communication. Members of a social world perform
actions to accomplish the shared purpose of the world and these actions will continually
permute to suit the contingencies of the situation at hand. Social worlds are not
necessarily bounded by traditional social or organizational boundaries: their duration is
entirely dependent on the task at hand, and membership in the social world can range
from highly informal and/or transient to highly formal and/or persistent.

Strauss’ model of social worlds, we should point out, was developed as an abstract way
of making sense of his investigations of workplace situations. It was never designed or
intended to be used as a kind of “systems architecture” or “systems requirements”
framework. Thus our.use of Strauss’ ideas is part of an amalgam of technical
possibilities, past experiences and searches for models that will break through our
blindnesses and, in doing so, point the way to potential new solutions to the problem of
computer-supported cooperative work.

So, why use social worlds as a basis for building (or, more appropriately, thinking about
building) a CSCW system? In large part the answer is historical: Given our previous
work in action-based collaboration support, and given the problems that arose in
attempting to support only a part of the continuum of the formal aspects of work
(ignoring the informal completely), we were searching for a model that displaced action
as the central focus of work, admitted the flexibility and contingency of work, and gave
the informal aspects of work equal place with the formal. We believe Strauss’ approach
does all this, and more. For us, Strauss provides a counterpoint to the obsession with
action that pervades a significant part of the CSCW community and points the way to an
alternative model.

We do not claim, by any means, that we have yet made full use of his ideas and approach.
Indeed we would be the first to agree that our use of Strauss thus far has been more as an
inspiration than anything else. But we do believe that there is significant value in this

approach and that it can act as a lever to break open intellectual logjams. In Section 5 we
explain how insights based on a deeper understanding of the subtleties of social worlds
are allowing us to move beyond some of the shortcomings of the current version of
wOrlds, and identify directions which potentially can help overcome the limitations of
wOrlds and similar systems.

3 The wOrlds solution

Our work on wOrlds has proceeded on two parallel tracks that shape and inform each
other: a theoretical track developing the notion of locales and a practical track building
our prototype system.

3.1 Locales

We have learned from Strauss that as people work, social worlds continually form and
dissolve, as needed. For us the essential question for wOrlds was how we could support
contexts for work embedded in the computer such that members of social worlds could
then use to accomplish their tasks. When groups are working, they need the following:

e The family of artifacts that make up the “formal” layer of their work activities.
Examples include program files, medical records, yellow stickies, stripcharts, etc.

e The tools that are used to manipulate these artifacts, such as compilers, editors,
debuggers, pens, ECG machines, etc.

e Resources for “effective communication” which grant members of the social
world the ability to communicate appropriately to the task at hand.

e Automation of mundane tasks, such as change notifications, where appropriate.

e The ability to navigate, i.e. to seamlessly switch among multiple ongoing tasks,
interrelate them as appropriate, and find tasks and people as needed.

The question then becomes: what is it that we can provide through a computer network
that allows the construction of contexts of work such that the needs outlined above are
met? Our answer is to introduce the notion of locale.

A locale for the purposes of wOrlds is a “virtual space” inside the computer system
which is intended to be the vehicle for groups to establish shared contexts. Many locales
can exist simultaneously, and context switching among them should be relatively easy.
Further, each locale should provide the following:

Furnishings. Access to shared objects and tools which can be manipulated by users as
necessary. Although the specific objects and tools used to furnish a locale will vary
widely from locale to locale, depending on its purpose, every locale will provide audio
and video conferencing among all the users “in” the locale at a given time.

Participants Participants are users who may or may not be present in the locale at any
given time, but who have ongoing responsibility, defined by roles, inside the locale.

Visitors. Visitors are users who are in the locale at a given moment, although they may
or may not have any particular roles there. Entry to locales can be restricted when

required.

Trajectory Schemas or Processes. Processes define the flow of information and control
of actions. Processes generally span locales, and can be seen as a way both of automating
standard aspects of workaday activities where appropriate and useful, and as a way of
grouping locales together,

Actions Actions with user-defined semantics can be invoked at appropriate times, subject
to satisfaction of guards and other constraints.

Additionally, locales provide ways of browsing and viewing information, establishing
Audio/Video (AV) calls among users and navigating through the collection of locales.

Thus, locales in wOrlds are our current way of “affording” social worlds’ interactions via
the computer, by providing a framework for construction and support of work contexts.

To support the definition of domain specific locales and the representation of trajectory
schemas which exist within and across locales, wOrlds provides a specification language
called Introspect (Tolone 1995). We use the term ‘trajectory schema’ rather than
‘process’ or ‘workflow’ to convey the contingent, continually evolving nature of work.
Introspect supports run-time modifications to locale definitions and trajectory schema
representations. The environment for constructing and modifying such support is itself a
locale within wOrlds.

3.2 The Technological basis for wOrlds

TekTk

Figure 1 wOrlds Architecture

(b)

Ut ol

(@
(e
(d)
(c
(f
\
(o)
(a) Locale Pane (c)NV (e) Mosaic (g) Site Navigator
(b) Tool Bar (d) VAT (f) Web Tool

Figure 2. Example Locale Screen Shot

Our goal is to build a system that affords collaboration over the widest possible range of
networks and bandwidths, and that scales to support tens of thousands of users spread
across thousands of locales. Thus a centralized, server-oriented architecture is unlikely to
be appropriate. Instead we’ve been investigating the use of distributed object frameworks
as the basis for building wOrlds. Figure 1 gives a schematic overview of our architecture,
based on Object Request Broker (ORB) technology [13].

3.3 A Brief wOrlds Tour

Users enter wOrlds by warping into their home locale. Warping is the most primitive way
within wOrlds of moving from one locale to another. It is similar to barging into a room.
Users can think of their home locale as their office. An example of a home locale is
presented in Figure 2. The display of a locale is minimally characterized by a locale pane
and a tool bar.

The locale pane, which is an object shared by all visitors to a locale (see Figure 2(a)),
displays to the user:

e video images of those people who are currently present in the locale. Each locale
in wOrlds supports an audio/video conference (provided by standard conferencing
tools such as NV and VAT, see Figure 2(c) and (d)) to which users are
automatically added and removed as they enter and leave the locale, respectively.

e the participants in the locale, whether or not they are present.

e the particulars of the locale. This is the family of shared objects relevant to the
locale. We distinguish four types of shared objects:

e administrative objects necessary to the maintenance of the locale (such as the
locale pane objects themselves, or role definitions for participants),

e applets, which are small application objects written to furnish the locale (such as
an IBIS discussion manager, a shared document annotator or a bug report),

e integrated external tools (such as word processors, calendars, or spreadsheets) and
o external objects (such as files, URLs, or database objects).

e and, a description which provides the purpose or rationale for the locale’s
existence.

Each of the above is displayed on a separate page of a notebook widget to conserve
screen real estate. Pages of the notebook may be ‘torn off’ whenever a user desires to
view multiple parts of the locale pane simultaneously.

The tool bar, see Figure 2(b), has four main components:

e the current locale pane which always contains an iconic representation of the
user’s current locale. Copies of this icon may be created (e.g., via drag-n-drop)
and passed around as references to the locale.

e the self pane which always contains an iconic representation of the user. Copies of
this icon may be created and passed around as well.

e a collection of tool icons which provide users with a standard set of tools and
actions. Examples include: XEmacs, an issue-based discussion applet, a ‘warp to
home locale’ button, a mailer, a network news reader, a Web Tool which opens a
web conference using Mosaic 2.5b3 (see Figure 2(e) and (f)), and a navigation
tool.

e a drop area called a briefcase which can accommodate any object you want to
carry around from locale to locale.

Unlike a locale pane, the toolbar is unique to a particular user, who can extensively tailor
both the bar and the bindings of buttons to tools and applets.

As users work in the wOrlds environment, they can move from locale to locale using the
wOrlds’ Navigator. An instance of this tool can be created at any time by pressing the
appropriate button located on the tool bar. The Navigator, see Figure 2(g) has four
components.

e Site Pages: The wOrlds universe is partitioned into many sites. Contained within
the site pages are those locales registered at the site the user is navigating. From
these pages users can warp or glance other locales. Glancing is a more polite way
of entering a locale. For example, users can glance a locale to see who is currently
present, at which time, a temporary audio/video connection is established between
the glancer and those present in the locale. Those people present in the locale can
then warp the glancer into the locale if they so desire. Our glancing model is
closely based on the work of (Tang et al 1994).

e Site Users: Contained on this page are icons representing all the users who are
registered at the site being navigated. A call feature is provided to allow users to
establish locale-independent AV conferences.

e Other Sites: This page contains icons representing other sites in the wOrlds
universe.)

e Personal Pages: Each user has his/her own set of personal pages which contain a
‘hot-list” of locales for that user. The locales, represented by icons on these pages,
are not necessarily registered at the site being browsed.

The Navigator is not the only means of navigation within wOrlds. Because wOrlds is
MIME-compliant, users and locales can be registered with an HTTP server, accessed
from the world-wide web or referenced through mail messages, and treated as URLs.

4 Introspect: The wOrlds Reflective Layer

In order to support the definition of domain specific locales, the representation of the
‘process’ which exists within and across locales and the modification of each of these at
run-time, WORLDS provides a specification language called Introspect. To facilitate the
‘radical tailorbility’ that support for collaborative work requires, Introspect employs a
meta-level architecture, the design of which is based on the principle of reflection. Below
we briefly present the design of Introspect’s meta-level architecture and demonstrate how
this architecture enables run-time modifications within WORLDS.

4.1 Meta-Level Architectures and Reflection

Following Maes’ definition of reflection as ‘the process of reasoning or acting upon
oneself’ (Maes 1987), Introspect employs a meta-level architecture where each level, at
least in part, is causally connected to its adjacent levels. By definition, two levels are
considered causally connected if changes to one level affects the other, and vice versa.

We partition the architecture for Introspect into three separate levels. As Introspect is
designed within an object-oriented framework, each level is defined by a collection of
objects. Abstractly, we refer to these objects as meta-specifications, specifications and
instantiations. We arrange these objects into a meta-object hierarchy such that a meta-
specification is a meta-object to a specification and a specification is a meta-object to an
instantiation. Furthermore, where each specification is a meta-object to a single
instantiation, a meta-specification may be a meta-object to multiple specifications.

The meta-object relationship between meta-specification and specification objects is, on
the surface, similar to a prototype relationship., Yet, a specification is not created by
directly cloning a meta-specification since this process will produce another meta-
specification. More generally, the scope of changes made to specifications and meta-
specifications may vary. For example, a locale can be modified by:

e modifying the instantiation of the locale. In this case, such changes are reflected
to that locale’s specification. ‘

e modifying the specification for the locale. In this case, such changes are reflected
to the locale’s instantiation and optionally to the locale’s meta-specification.

e modifying the meta-specification for the locale. In this case, such changes are
optionally reflected to the specifications of that meta-specification and
consequently to the instantiations of the specifications.

Thus, as a result of the causal connectivity between the levels of Introspect’s architecture,
when modifications are made to one level, other levels may be affected. Moreover, as we
outline below, users can both specify and modify this support entirely from within the
system.

In the following sections we present in more detail three parts of Introspect: the
specification of locales, actions and process models. Throughout this presentation we
provide examples of how Introspect, using its meta-level architecture, allows run-time
modifications to the collaborative support which wOrlds provides.

4.2 Locale Specification
As discussed above, the fundamental component of worlds is a locale. The process of

specifying a new locale to worlds begins with the definition of a meta-specification
object for the locale. To define a new locale meta-specification users are required to

10

Pt e &9

Figure 3. User Interface to a Locale Specification

provide only a title for the meta-specification. Having done so, locale
specifications/instantiations may be created from this new meta-specification. Such
specifications/instantiations are essentially empty locales which provide only basic
domain independent support for collaborative work. Other optional attributes for locale
meta-specifications, however, can be defined. These attributes allow domain specific
support to be defined. A brief discussion of each attributes is presented below.

e Description: the description outlines the primary work activity for which the
locale is created or for which it is being used.

o Particulars: the particulars contains the initial set of particular pages and the
objects contained within these pages for any specification/instantiation created
from the meta-specification.

e Roles (participants): Locale participants may be partitioned into specific roles.
Roles can then be used in the specification of their locale attributes.

e Prompt: Whenever a user creates a new locale specification/instantiation from a
meta-specification, wOrlds can prompt the user for additional information.

e Actions: A collection of domain-specific actions can be defined for any locale.

o Initiation, Termination and Add Participant action sequences: An action sequence
is essentially a block of code. Whenever a new locale specification/instantiation is

11

created from a meta-specification, the initiation action sequence is executed in the
context of the new locale instantiation. The termination and add participant action
sequences for the new locale specification are then initialized to those of its meta-
object. The termination action sequence is executed in the context of the locale
instantiation just prior to the locale instantiation being destroyed. Whenever a new
participant is added to the locale instantiation, the add participant action sequence
is executed in the context of the locale instantiation and the new participant.

e Processes: Each locale specification/instantiation, when created, can instantiate a
collection of process models.

In Figure 2 we saw a user interface of an example locale instantiation. In Figure 3 we see
the interface to a locale specification. This interface consists of a notebook widget and a
control panel. Contained within the pages of the notebook widget are the locale attributes
described above. For convenience, the control panel allows the users to toggle between
viewing the attributes of the locale specification and the attributes of its meta-object, a
locale meta-specification. In Figure 3, the user is currently viewing the attributes for the
meta-specification.

In Figure 3, we see that the initiation, termination and add participant action sequences
have been specified for the locale meta-specification. If a user was to replace, for
example, the current termination action sequence with another, she would be prompted to
indicate the scope of such changes. The modifications can affect all specifications of the
meta-specification, some specifications or only future specifications of the meta-

Acljourn Mesti

e -

Figure 4 User interface to an action specification

12

specification.

4.3 Action Specification

Each locale can contain a collection of domain specific actions. In accordance with our
meta-level architectural design, users define new domain-specific actions for a locale by
creating an action meta-specification. The user interface to an action meta-specification is
shown in Figure 4.

As with a locale meta-specification, the only required attribute of an action meta-
specification is a title. Other option attributes include:

o Descritiption: Provides the rationale or purpose for the action.
e Help: A textual runtime support for the action to users.

e Prompt. A prompt may be defined to request input from a user upon the execution
of an action.

e Roles. Each action can specify a collection of roles in which a user must be
playing in order to execute the action.

e Source and Destination States. Any action may be incorporated into a process
model. When the source and destination states are specified, the source state must
be active in order for the action to be available for execution.

e Action Sequence: An action sequence is essentially a block of code. This action
sdequence is executed whenever the action is performed.

e Guard. The guard is an action sequence returning a Boolean value. It must
evaluate to true in order for the action to be performed

From action meta-specifications, action specifications and instantiations are constructed.
In the same way that the structure of a locale specification is very similar to that of a
locale meta-specification, the construction of an action specification is very similar to
that of an action meta-specification. the display of an action specification is the same as
that shown in Figure 4 except that it contains a control panel for toggling between the
specification and meta-specification attributes. the structure of an action instantiation is
however much different. This is constructed dynamically and represented simply as a
menu item.

This design for locale actions offers us a great deal of flexibility when making

modifications. We could, for example, modify the collection of required roles for an
action in several different ways:

13

e by modifying the action specification directly such that the modifications affect
only that specification

e by modifying the action specification and propagating the modifications to the
meta-specification

e by modifying the meta-specification directly and propagating the modifications to
the specifications

e or, by modifying the meta-specification such that only future specifications
acquire the modifications

Thus, locale actions, via their attributes, perform several functions. First, they provide
information to the users via their description and help. Second, they provide access
control via roles, the source state, and guard. Third, they depict temporal relationships
within a process model., And fourth, they provide an interface to the action sequence via
a prompt.

4.4 Introspect Process Model Specification

Introspect’s visual process modeling language is based on Harel’s non-overlapping
statecharts (Harel 1988). Figure 5 contains the basic building blocks of our process
modeling language.

Statechart events, represented as labeled arcs, represent an action within a locale. Single
thread process states function as expected according to Harel’s statechart definition.
Paralle]l thread process states also function as expected except that each thread in a
parallel thread, by definition, contains a distinguished child state called a sync that is used
to graphically provide synchronization among process state threads.

Each process state (except syncs) can be attributed with an activation and deactivation
state sequence. Also, single thread process states as well as each thread of a parallel

Single Thiead Provess Sale

(Tl

Walel) ¢ Label] « (Jabel)
. Pauie(Thread Pmcass:'sme
‘ :
Q : Q : Q

— T

G—p ¢ »
Hislory Noade Oclath Pyrnw

Figure 5 Process Modelling Primitives

14

ol P 58
T Process Modol oo ke fuaed],

[Bag Ticting Frozeis ‘
—) ;
l ?nu, Nipcet Em—;F l ‘
- ”
L" . l‘

., (}v:“"‘j

Fapoascall o Fapromuriie ~—-[erd,

RezloBiEBR

T

B R e B Y e B A s B he e D e

Figure 6 Example Process Model

thread process contains a history node and a default pointer. A history node is a
placeholder that records the child state that was last active prior to the parent becoming
inactive. Each history node contains an option pointer w indicates the contents of the
node prior to the first time a parent state is activated. A default pointer is used to
determine the child state to activate when the parent becomes active. When the default
pointer points to the history node, this indicates that whenever the parent state becomes
active, the child state held in the history node should become active. Figure 6 shows an
example process model.

The role of process modeling within wOrlds is threefold. First, process modeling can be
used to depict temporal relationships of activities within and among locales. Second,
process modeling can be used to bridge locale boundaries to support interactions which
arise among locales. For example, Introspect supports actions within one locale that have
affects on other locales. Third, process modeling is used to interleave locales to provide
users the illusion of participating in multiple locales, simultaneously

5 Obligations: Flexible Workflows with Provable Properties

This section of the paper examines support for more flexible, composable workflows.
Computerized support for workflow has changed dramatically in the last fifteen years.
Early office procedure and workflow systems, such as SCOOP (Zisman 1977) and
Officetalk-D (Ellis and Bernal 1982), required a priori specification of the workflow and
modifications were not allowed during execution. While these systems laid excellent
groundwork, their inflexibility lead to a lack of acceptance.

More recently, Suchman (1987) proposed a notion of situated actions where actions occur
in situ and are essentially ad hoc. Future actions cannot be predicted to every level of
detail since it is impossible to know how future situations will influence actions. Even
examining an action post hoc requires knowledge of factors that lead up to the action and

15

the situation at the time of the action. As situations change, the people involved normally
adjust their actions accordingly. Deciding how to respond to a situation differs depending
on the person. For some, deciding on a course of action can be obvious, while for others,
how to proceed may be problematic and some deliberation may be required to decide on
the next action. When an action is non-problematic, the action simply flows with little
concentration on the action itself; whereas, when a problem arises, the details of the
action emerge.

It would seem that encoding anything to do with situated actions would be difficult due to
the ad hoc nature of actions, the fluidity of a situation, the invisibility of obvious actions,
and the fact that activities happen external to a computer and keeping the computer up-
todate with the actions taken interferes with the process of acting. Sometimes, however
the disadvantages of keeping a computer up-to-date are outweighed by the advantages
gained by having a computer assist in tracking activities and acting as a tool for
communicating activities among groups of people who are separated by time and/or

space.

The notion that actions are situated does not mean that all actions are haphazard,
completely unpredictable, or do not follow a plan. Suchman suggests that vague plans of
action can be created in advance, realizing both that details of a plan will be filled in as
actions progress and that a plan may change over time. Thus, unique situations may alter
anything about a plan as needed. In this way, broad plans can be constructed based on
past experience or on a proposed method of reaching a goal. Then, as circumstances
unfold, exact details can be filled in and the plan can be modified so it continues to
provide guidance. A plan does not force a particular set of actions to be taken, but helps
provide an orientation to be in the best possible position to take actions when
encountering a situation.

Within repetitive circumstances, a vague plan may be shared to guide simultaneous
attempts to achieve a similar goal. As the tasks proceed, the vague plan may be changed
and, depending on conditions, each individual instance may begin following the changed
plan or continue following its current plan.

In this paper, we propose a model which supports both local modifications and general
changes to a vague plan. Individual instances can be coded to upgrade to new plans as
they become available, remain with their initial plan, or a combination where up until
some point in the process a switch will occur, but after that point, the instance maintains
the same plan. The implementation of this model, called Obligations, has been prototyped
in two collaborative environments, ConversationBuilder (CB) (Kaplan et al 1992) and the
new wOrlds environment (Tolone 1995).

The remainder of this paper will proceed as follows. First, our design goals are listed to
set the context of the paper. Next, we provide an overview of the terminology used with
obligations, define how obligational networks (workflows) are constructed, discuss an
error detection mechanism that ensures that executed networks are valid, and describe

16

1

network execution and manipulation. Finally, the paper ends with a brief description of
related works and a conclusion.

5.1 Design Goals

We begin by describing the primary and secondary design goals that pertain to the
discussion in this paper.

5.1.1 Primary Design Goals

Support for a Range of Specifications. It is generally accepted that it is impossible to
specify, in advance, the full details of how a task will proceed (Suchman 1986, Robinson
1993, Abbott and Sarin 1994). Sometimes participants have a lot of knowledge about
what steps are necessary to complete a task, how the steps are related, and what must be
accomplished in each step. Other times, very little is known about how to proceed and the
flow is essentially designed as the task progresses. Therefore, one necessary goal for a
workflow system is to allow initial specifications that are well defined, loosely defined,
or incomplete.

Support for Modifications. Regardless of the initial form of a task specification,
modifications should be allowed. Conceptually, a task has two types of specifications:
general specifications describing how the task should proceed and local specifications
resulting from modifications to the general specifications. Modifications can be made to
either type of specification. Global modifications potentially change all tasks initiated
from a set of general specifications. We say potentially since there are times when
grandfather clauses are a valid option and those tasks should continue to follow their
initial specifications. As new versions of general specifications become available, users
should be allowed to replace a task’s current general specifications with new, presumably
compatible, specifications. If the two specifications are not completely compatible, local
modifications may be necessary to massage the specification into a compatible format
without altering any other similar tasks. Local modifications may also be made to align a
task with unique circumstances and exceptions. ’

Inheritance of Existing Definitions. In order to reduce the effort of specifying
workflows, a library of specifications should be available. Furthermore, if multiple
inheritance is available to tasks and their inherited specifications, complex task
definitions can be composed quickly by inheriting existing specifications and then either
specializing them or composing them together to make a new, composite specification.
To reduce specification effort further, it should be possible to extract a task’s
specification, either during or after execution, and either save it in a library or use it to
instantiate a new task directly. This allows a user to begin with a free-form task, construct
a specification as the task progresses, and then reuse the specification for later
occurrences of a similar task.

17

Detection of Errors. Since task specifications are interactively modified by end users,
the environment should supply an error detection system that is automatic and as un-
intrusive as possible. Error conditions include: tasks that cannot proceed due to lack of
specification or dead lock conditions; inheritance of specifications that are incompatible;
mismatched signature and call bindings for sub-tasks; and incorrect specification errors.
When multiple errors exist in a specification, the error detection system should note as
many as possible rather than stopping as soon as one error is detected. In addition, only
the affected portions of a task should be halted, allowing work to continue on unaffected
portions while errors are fixed.

Bridging of Task Contexts. As described in a previous paper (Bogia et al 1993), we feel
it is important to support any ad hoc and/or planned interdependencies that might arise
among task contexts. Tasks are not always initiated and completed within the same
context. Often it is necessary to place a request for work in another context and then wait
for the completion and/or results. Sometimes these dependencies can be templated into a
task definition, but often they must be created by users.

5.2 Secondary Design Goals

Many of the secondary design goals described next are mechanisms used to support the
primary design goals just mentioned.

Utilization of Meta-objects. We wish to make extensive use of the meta-object concept.
A meta-object describes the behavior of an object, and changes to an object’s meta-object
cause the object to behave differently. When many objects share a meta-object, changes
to that meta-object affect all the objects. If temporary changes are desired, a new meta-
object can be substituted for the original one for a limited time. The temporary meta-
object can call the original meta-object whenever the original behavior is desirable.

Record of History. Given that a user is allowed to modify the workflow while it is
running, it is quite possible to expect a person to remove an active unit of the flow and
then wish to reinstall it in its pre-deletion state. To support this, some mechanism for
tracking state information must be available, independent of the definition of how a task
flows (i.e., modifications to the workflow definition do not destroy or lose history
information). In addition, since workflows can loop back, any unit in a workflow may be
invoked multiple times. The history mechanism should record these invocations and their
relationships with other units in the workflow.

Control of Access. Mechanisms for controlling who can make changes and which
changes are allowed (e.g., deletion, modification, creation) must exist in the system.
Thus, throughout this paper when we talk about people making modifications, it is
assumed that they have permission.

18

5.3 Obligation Overview

This section provides a terminology overview. An obligation represents a request from
one person, the obligator, to other agents, the obligatees. Obligations allow users to
represent dynamic interdependencies that arise among their activities by specifying the
contexts in which the request was initiated and the expected locations where the request
can be fulfilled. For a thorough discussion of how obligations interconnect collaborative
activities see (Bogia et al 1993). In addition, obligations contain information such as
priority, deadline, attachments, a description of the goal to be attained, and the network of
sub-obligations that must be performed to complete the obligation. Figure 7 shows a
user’s view of an obligation in the wOrlds environment.

Figure 8(A) shows a more detailed diagram of the network portion of the obligation
shown in Fienre 7. The network of an oblisation is comnased of the followine n rwork

objects

inform
cannot
for dist
that spr
access
unless

Jonak Fanidrs

b i poqe REQL B EpeC

Hz';ﬁ -
-

el NPT ag ol LSRR N L ot < ey s P

Figure 7 Obligation Screen Dump

19

m oz » < » oz =

» 4 » @

GXO- ARGV OO0K FEAOT

~ » 3 m 2z Mmoo

2 0 =~ A ®» 6~ W~ am3n

Figure 8. Example Obligation Network

Ports are associated with stages and produce tokens. The concept of an obligation token
shares many similarities with petri net tokens. We are exploring how petri nets might be
used for static analysis of an obligation. Output ports produce tokens which (potentially)
enable attached input ports. Output ports are attached to input ports with links. Multiple
links at output and input ports represent forks and joins, respectively. Multiple output or
input ports on a stage represent a decision path

20

Links can also be connected to points outside of the current obligation. Links
interconnect two obligations that are already running, send notices to users that obligation
events have happened, automatically spawn sub-obligations, and so on.

5.4 The Obligation Network

The following section describes how an obligation’s network is constructed from three
conceptual layers: an instance data layer, a local modifications layer, and a general
specification layer. See Figure 8(B) for a graphical view of the obligation layers. This
figure is adapted from the benchmark described in ISPW-6/7 (Kellner et al 1991) which
focuses on a late (and isolated) design change in a standard software life cycle.

As a brief overview, the instance data layer maintains an obligation’s history. The general
specification layer contains a description of the general process that should be followed.
The local modifications layer holds any alterations that are specific to an obligation and
should not be shared with other similar obligations. Each obligation inherits one or more
templates that describe (portions of) the obligation’s flow from the local modifications
and general specification layers. The order of the multiple inheritance determines how the
templates are interspersed.

The following subsections describe each conceptual layer in more detail, introduce how
surrogation is used to provide additional flexibility, define the composition algorithm,
and then discuss the advantages of this approach

5.5 Obligation Layers

The obligation model separates the templates for a network from the instance data layer
which consists of information about the current state of the network such as what actions
are active, what has been completed, and how many times each network object has been
invoked. This layer provides a history record independent of the template layers so that
even when a network object is removed, a record of its state prior to removal is
maintained.

Each time a network object is activated, a I is created and placed on top of the history
stack for the appropriate object. Thus, if a loop back exists within a network, it is possible
to have multiple history objects, one for each time through the loop (e.g., in Figure 8(B)
two loop backs occurred between Review Design and Modify Design, so there are
multiple history objects for each).

The other two layers contain templates that define the general specification and local
modifications respectively. The local modifications layer contains one or more templates
representing all changes that have been made to the network to bring a specific obligation
into alignment with the situation at hand. These changes do not affect any other
obligations that have been spawned to accomplish similar goals.

21

For instance, in this example a decision was made to skip the Modify Test Plans, so it
was deleted. A new link was also created connecting directly to the Modify Unit Test
Package, so that phase could begin. Of course, as this phase progresses it may be
necessary to re-install the Modify Test Plans or to remove the Modify Unit Test Package
as well. It is unlikely that any of these modifications should be propagated to all other
obligations of this type so they are made within the local layer.

The general specification layer contains one or more shared templates that define the
intended global process that is to be followed. Any changes made to these templates
potentially affect all obligation instances sharing the changed template(s). When a global
process is unknown, a free-form template exists which defines a starting and ending point
and nothing more.

Within the obligation system, the general specification and local modification templates
are treated as metaobjects to an obligation. A different approach would have been to copy
all shared templates into a newly instantiated obligation and then all future changes
would be local to the obligation. However, we felt that this was unacceptable since the
ability to change shared templates and have these changes automatically reflected in
running obligations was lost. By separating out the instance data from the templates and
using a combination of meta-objects and surrogation (discussed next), obligations can be
setup either to act as if templates are copied or to upgrade automatically as shared
templates are changed.

5.6 Surrogation

_As alluded to earlier, obligation templates do not provide a complete solution to the
modification problem since there are also times where the correct policy is to remain with
an initial specification (i.e., grandfather clauses). This deficiency is elegantly resolved by
using versioning and surrogation. Rather than having a template inherit other templates
directly, a template inherits a set of surrogates. A surrogate is an object that acts on behalf
of other objects. Typically, surrogation works in conjunction with a version system, using
rules to describe which version to select from a version tree. As the version tree changes
(e.g., via additions, deletions, modifications to a version’s state), the surrogate may return
different objects.

For obligations, a surrogate has a rule that locates a template. As conditions change (e.g.,
new templates are created, the surrogate’s rule is changed, or a user changes personal

_preferences), surrogates may dynamically switch to new templates. However, if dynamic
upgrades are not a desirable feature, a surrogate’s rule can be set to ‘this-one’, and the
current template is essentially copied into the obligation. The template is only changed if
the rule is changed.

This type of ‘continual binding’ also accomplishes ‘delayed binding’ where the template
to use is selected as late as possible.. A surrogate’s rule is first dereferenced at invocation
and selects a template according to its rule. The section on Surrogation describes cases
where obligations do not upgrade automatically.

22

However, unlike ‘delayed binding’, surrogation can continue to select the proper
template; thus, the template is automagically maintained during the entire duration of an
obligation. For instance, in Figure 8(C) assume that the rule in the divisional surrogate
has been defined to return an appropriate policy based on the division(s) of the
obligatee(s). If a new version of the divisional policy is released and the surrogate always
selects the latest version, then the obligation’s network would be upgraded. Another
example is to use a surrogate to detect whether a person is a novice or expert and then
install a verbose or terse version of a template. As a novice becomes more experienced,
the novice setting can be toggled and the network changes to the expert view.

We now describe the algorithm that is used to combine all the templates (via surrogation)
into a composite network that can be executed. The algorithm uses a dynamic
transparency metaphor where the instance data layer and all templates held in the other
two layers are treated as individual transparencies such as the ones used with overhead
projectors. Composition is similar to stacking all the transparency sheets, one on top of
the other, and then viewing the network. The composition is dynamic in the sense that
object alignment across transparencies is done by name unification rather than spatial
orientation as would be the case with traditional transparencies.

The topmost template of every obligation is called the master template. This template is
always a local modification template and defines the inheritance order of all other
templates. The composition algorithm begins by dereferencing all surrogates and
generating a precedence ordering of the templates returned. We use a scheme similar to
the one used by the Common Lisp Object System (CLOS); however, any other method of
converting a multiple inheritance list into a precedence list, such as the methods used by
Flavors or LOOPS, could also be used.

The next step is to combine the individual templates into a composite view of the
network. As the network is constructed it is cached in the instance data layer by creating
a holder object for each valid network object. Each holder object maintains a list of
template objects that contribute to its definition. This reduces overhead when attempting
to compute the set of methods that should be called when an object is activated,
deactivated, receives a token, and so on.

Composition consists of iterating over the list of templates from least specific to most
specific (bottom to top in Figure 8). The steps for each layer are:

1. Handle Deleter Objects. A deleter object removes the corresponding holder object
if it exist in the obligation under construction. Deleter objects provide a way for
more specific templates to remove unnecessary network objects that were created
in less specific templates.

2. Handle Creator Objects. A creator object attempts to create a holder object. If the
holder object already exists, the creator acts as a modifier object (described later).
If the holder does not exist, it is created and the creator template is added to the
list of inherited templates for the holder.

23

3. Handle Deleter/Creator Objects. A deleter/creator object combines the above two
operations. This is necessary since within any template only one template object
may exist per network object. Deleter/creators allow users to clear prior
definitions and redefine the object.

4. Handle Modifier Objects. A modifier object alters portions of an existing holder
object. For instance, an example of a modifier is show in the local modifications
template of Figure 8(B). This modifier simply changes the existing stage
specification into a subobligation without affecting other settings.

5.7 Advantages

There are many advantages to structuring the network using surrogation and multiple
layers. First, once a task has been decomposed into at least two layers--which it had to be
in order to support a clear distinction between general specifications and local
modifications--further decomposition of the layers into multiple templates is relatively
trivial.

Multiple templates in the general specifications layer allow participants to use standard
multiple inheritance design philosophies when creating their task templates. Furthermore,
it is possible to have several similar templates available that can be substituted according
to need.

Multiple local modification templates provide a couple of control levels to the obligator’.
First, each local modification template has associated access controls to tell who may use
this template to make changes and what kind of changes (e.g., creation, deletion, or
modification) are allowed. Second, by controlling where a local modification template is
in the inheritance hierarchy, a person can control the extent of modifications made within
a template (i.e., the top-most template can create, delete, or modify anything while the
bottom template can only create new objects).

Figure 8 only shows a single local modification, but multiple layers are allowed and they
may be interspersed with general specification templates.

A second advantage, as shown in Figure 8, is that while global definitions of general
check points can be designed that must be adhered to by all divisions, the general policy
does not necessarily dictate the details of how divisions are to move from one point to the
next. Each division may then have a template that further refines the network according
to the specific way in which work is processed. This refinement continues down to the
individual worker.

Third, by allowing multiple inheritance, the effort of specifying complex networks can be
reduced either by inheriting a particular template and specializing it or composing a
template that specifies phase one with templates that define phase two, three, and so on to
create a new work process.

24

Fourth, since local modifications are separated from the general specifications of a task, it
is easy to analyze what changes were made due to localized circumstances. By analyzing
the local alterations it is possible to note exceptions that occur frequently and alter the
general specification, making it pro-active instead of reactive.

Finally, by maintaining the instance data layer independent of the templates, the
extraction of control information from past instances for reuse purposes is easy. This
means that any obligation, running or complete, can be used as a template for
instantiation or saved into an archive of templates.

5.8 Error Detection

Along with all the flexibility of the obligation system comes the possibility for errors. For
instance, the surrogate rules may be wrong, people may make changes to templates that
are incompatible with older versions, links may go to non-existent ports, a call to a
subobligation may expect one of two results, but receive a third, and the list goes on.
Rather than restricting users from making ‘invalid’ moves, we chose to add an error
detection system that warns users that the action(s) just taken possibly put the system in
an unacceptable state. Because a history record is held in the instance data layer, it is
reasonable to allow modifications that end with an incorrect state since the user can back
out of them. The remainder of this section discusses mechanisms for detecting problems
in the system. In all cases, if an error is detected, an obligation is placed on the obligator
to fix the error. However, having an error does not necessarily stop the obligation from
proceeding to completion. We adapted an approach used for visual programming
languages such that the paths in error are marked and not allowed to execute; however,
the obligation can proceed along other paths that are error free.

5.9 Types of Errors

One type of error detected is when holder objects are left dangling. The composition
phase creates holders based on the templates, ignoring the fact that ports must be
contained in a stage and that links must connect from a valid output port to a valid input
port. Each holder in an obligation is tested to verify that all required objects exist. As an
example, consider Figure 8 where the division template is attempting to add a link from
the port ‘Approved’ defined in the corporate template. If the corporate template is
changed and the ‘Approved’ port is removed from the template, then the link defined in
the division template will fail to add the link since a link cannot connect to a non-existent
port. An error is generated if the link template object has the ‘required’ property set. If the
link is not ‘required’, then the link is not added and is silently ignored.

Another error that can occur is when a surrogate’s rule is meant to return a particular type
| of template (e.g., a template that defines a division’s process for making a design change),
} but it does not. To detect this, surrogates and templates can specify expected and actual
| types, respectively. If the two types do not match, an error is generated.
|

A third type of error detected is when incompatible ports are linked tdgether. It is
possible to specify the accepted connections of a port which reflects the type of the

25

connection(s) that can be made similar to the way in which hardware connectors are often
shaped differently to keep people from inserting the wrong type of plug. In keeping with
our desire to make obligations simple to use, the default type for everything is
‘unspecified”;, however, judicious use of types when building complex layers of templates
allows connection errors to be caught before they become a problem.

There are two types of ports. First, a static port can specify a finite set of accepted
connections. When two static ports are linked together their connection sets are
intersected and if the result is a non-empty set, the connection is allowed; otherwise, the
link is marked as an error. We chose to use finite sets rather than type hierarchies
because, as pointed out by Burnett (1993), type hierarchies are generally subsumed by
type constraints (finite sets). If multiple links are attached to a port, then each pair of
ports must have a non-empty intersection; however, notice that the overall intersection
can be empty (i.e., if ports A, B, and C connect to D, then A ND,BN D,andC N D
must be non-empty, but A "B N C ND can be empty). In other words, there must exist
a valid connection type for each link, but it does not have to be the same type of
connection for all links.

The second option is a polymorphic port. These port connectors attempt to adapt
themselves to match all incoming connections; however, unlike static ports, polymorphic
ports require that all in-bound types have a common type (i.e., the intersection of all sets
is nonempty). Polymorphic connectors specify a local or global variable name, a set of
type constraints, and a type constraint function®. When a static port is connected to a
polymorphic port, the static port’s set is first filtered against the type constraints and then
intersected with the polymorphic port’s set. For instance, assume port A has an accepted
connection set of {x; y; z}, port B has {y; zJ, and both connect to the polymorphic port C
with a type function of N, type constraints of {w; x; z}, and an initial value of
unknown’. First, connection A to C is filtered ({x; y; 2} N {w; x; z} = {x; z}) and then
intersected with the current value of port C ({x; z} M ‘unknown’ is defined to return {x;
z}). Then the B connection is filtered ({y; z} N {w; x; z} = {z}) and intersected with C’s
current value ({z} N {x; z} = {z}) and, thus, C has a connection type of fzg, and both
links connecting to C use this type. If a polymorphic port’s connection set ever reduces to
the empty set, then all links connecting to the port(s) with the given variable are marked
as type errors.

If the type variable is a global variable, its scope extends over the entire obligation. Thus,
if there are two (or more) global polymorphic ports in an obligation with the same
variable name, the type constraints of all the ports must be met and the actual type is
defined by the intersection of all connecting types. If the type variable is local, its scope
is restricted to the particular port. This is useful for defining ports where the intersection
of all connecting types must be non- empty. When two polymorphic ports are connected
together, the two variables are unified and all connections must pass all constraints for
both variables.

A final type of error is when a sub-obligation or stage completes and a token is not placed
on any of the ports that have out-bound links. This situation can arise under several

26

circumstances. One case occurs when the network is being defined as it progresses and
out-bound links have not been defined yet. A second case is when a port’s criterion is set
(possibly erroneously) to allow deadlocks. As an example, consider the ‘Review Design’
stage again. If the criterion for producing a token is set to majority and three people are
requested to review, each of them may decide to respond in a different way. 6Currently
the function can be set either to intersect the type constraint set with the connecting types
or to subtract the type constraint set from the connecting types.

When this happens, the stage would move to completion since every one has responded,
but no tokens would be produced since a clear majority was not reached. Another case is
when new options have been added in response to the current circumstances (e.g., a
person receives a request for a ‘yes’ or ‘no’ vote and adds a new option ‘maybe’).

Regardless of the reason, an obligation or stage that does not produce a token that
(potentially) activates other portions of the network could leave a state where no further
progress can be made in the obligation, but the obligatees feel that they have fulfilled the
actions requested of them. In these cases, the obligator is notified and requested
(obligated) to fix the network to allow it to proceed.

5.10 Example

To increase comprehension, we now describe Figure 8 in detail. The first step in
composition is dereferencing each of the surrogates found in Figure 8(C) which returns
the templates found in Figure 8(B). These templates are iterated over from bottom to top
adding a holder for each creator found in a template, deleting holders for each deleter,
recreating a holder for deleter/creators, and modifying information for each modifier.
Most of the holder definitions are straight forward since there is a single corresponding
creator; however, several special cases exists. First, notice that a deleter/creator is used to
rename the ‘Modify Code’ stage to ‘Begin Code Modifications”. Second, the ‘Begin
Code Modification’ stage is further modified to become a subobligation in the local
modifications template. Also in that template, the ‘Modify Test Plans’ sub- obligation is
removed, but the links to/from the obligation are not removed by the user, they are
detected later the error detection system. The remainder of the template objects are
reference objects which hold a place within a template so other objects have a reference
point.

The error detection routine detects that two links have been created that do not have valid
ports on each end (ie., the link from ‘Schedule...’ to ‘Modify Test Plans’ and from
‘Modify Test Plans’ to ‘Modify Test Unit Package’). These links are quietly removed if
‘optional’ or cause an error to be generated if either is ‘required’. Furthermore, all
surrogates are tested to ensure that they returned the proper type of template and all links
are tested to see that they connect ports which are connection compatible. \

Once the holders are validated, information from the instance data layer can be used for
highlighting particular sub-obligations, stages, ports, or links. For in7There is an internal
ID that is consistent between these two objects. stance, in the instance data section, each

27

of the objects that has been instantiated has an associated state (i.c., A - Active or F -
Finished). From this information, the objects are rendered using different fonts and the
superscripts show the number of times that the object has been activated.

5.11 Network Execution

Once the network is constructed, it can be executed. Network execution consists of
tokens being produced and ‘mirrored’ through the network. By mirroring tokens rather
than physically moving them, the tokens remain available in case later network
modifications cause new network objects to be attached to an object with a token. For
instance, if a new link is attached to an output port that has already produced a token, the
link begins mirroring the token immediately. This allows the network to be constructed a
piece at a time while continuing to execute as if the links had been there when the output
port’s token was produced.

Each network object has an associated criterion that specifies when a token is produced.
For instance, the default criterion for an input port is to wait until a token is available on
all in-bound links. When this occurs, a token is produced which, in turn, activates its
associated stage.

Users can also affect network execution by executing actions (e.g., Done, Major, Minor,
Approved in Figure 8) on active stages8. When the criterion of an action output stage is
met (e.g., all obligatees took the action, one person selected the action, more than half
have selected this action), a token is produced.

Tokens in the network are divided into two groups: internal and visible. The internal
tokens represent the physical location of all the tokens in the network; however, they are
not always visible to the participants of the obligation. For instance, when participants are
requested to ‘Review Design’, it may not be desirable to display the outcome of the vote
until the poll closes. In this case, internal tokens move to the appropriate places in the
network (e.g., voted: major, minor, or approved), but do not become visible to users or
subsequent stages until everyone has made a selection. The internal tokens can be used to
test certain conditions (e.g., to test whether everybody has voted) to determine when the
visible tokens should be enabled. 8When an obligation is initially created, the Start stage
is automatically activated.

5.12 Obligation Manipulation

The flow and location of tokens can be altered by modifying the network. New tokens
can be added to the network to enable stages that otherwise might not be enabled. This is
beneficial both for debugging purposes (it is not necessary to step through an entire
network just to test how latter portions of the net will execute) and for cases when it is
necessary, due to time constraints, to start a later stage even though all the dependent
stages have not been completed. A new token can be added by inserting an artificial input
port history object with a specialized meta-object which always reports that a token is
available. Once the network execution actually produces a real token for the input port,

28

its meta-object reverts to the templated version and the port returns to its normal
behavior.

Another form of manipulation is altering the network of an obligation. Editing is done by
graphical manipulation (e.g., dragging links from one port to another, dropping in new
sub-obligations, stages, or ports, or deleting existing objects) on either a running
obligation or any of the templates saved in a library. By default, modifications to a
running obligation are considered to be local to the obligation and are captured in the
topmost master template. However, users may select, via the list to the right of the
obligation network (see Figure 7), a particular template to modify. When this is done, the
extent of the modifications affect depends on whether the selected template is a local
modification template or a general template.

Once an edit is complete, all surrogates that depend on the edited template are notified
that they may wish to discard their current template and install the newly modified
template. All obligations whose surrogates upgrade to the new template have their
networks marked for recomposition.

Notice that if a network modification causes links to be removed, it is possible for a token
to be removed from an input port. This happens because links mirror tokens instead of
transmitting them. If a link (mirror) is removed, the input port is informed so it can
determine how to react. For instance, in the case where the removed link was the sole
source of activation for an input port, many possibilities exist. The input port may be set
(via properties) to keep a copy of the token and remain active, it could deactivate itself,
but upon reactivation return to its state just prior to deactivation, or it could deactivate
and when reactivated begin with a brand new history object.

Another form of editing an obligation is ‘bottom up’ composition where pre-existing
obligations are inserted into a network. There are two forms of bottom up composition.
The first is to create a one-of link between the two obligations. This allows an ad hoc
interdependency to be modelled. The second form adds the sub-obligation’s templating
information into the parent’s network. This means that if the parent’s network loops back,
new sub-obligations are created automatically. Thus, obligations support top down and
bottom up specification. In addition, since the network can be defined by connecting sub-
obligations together in any order, obligations also support forward and backward
specification. '

- 6 Is wOrlds a MUD?

MUDs, or Multi-User Domains, are environments aimed at supporting groups and
oriented around a metaphor of a room. MUDs tend to provide multiple rooms, and
facilities to move around from room to room. MUDs were initially developed to support
multi-user role-playing games (in these MUDs the rooms might represent different parts
of a castle or dungeon). Some MUDs have fixed interfaces and furnishings for rooms,
while others allow for varying degrees of programmability, allowing for modification of
rooms, interconnections, furnishings and behaviours of the virtual artifacts in the system.

29

(such MUDs tend to be called MOOs, after the object-oriented style in which they are
programmed). Almost all MUDs have a text-based interface, with scrolling descriptions
of rooms and keyboard-based actions.

Certainly to readers who have only ever seen text-based MUDs oriented towards game-
playing, wOrlds might not seem very MUD-like. However, there are some ways in which
wOrlds is MUD-, or MOO-like. Like many MUDs, wOrlds assumes it is useful to divide
the universe into collections of essentially independent “rooms”, provides facilities for
tailoring these rooms in various ways and provides facilities for navigating among these
rooms. Like more advanced MUDs, such as PARC’s Jupiter (Curtis and Nichols 1994),
wOrlds is investigating the integration of media space facilities into rooms, such as
audio- and video-conferencing.

The issue of whether wOrlds is or is not a MUD is not interesting in and of itself. The
fact that wOrlds ended up being MUD-like is an accident of intersecting research
trajectories rather than design. But the practical import of this coincidence is that many
aspects of our critique of wOrlds, below, are relevant to other CSCW systems, and the
research directions we point towards are potentially the basis for, or part of, a manifesto
for an entire class of collaboration systems.

7 Critique and future directions

In this section we will critique wOrlds from the perspectives of both theory and
technology. Critiques, almost by definition, tend to focus on the negatives but despite the
points and issues raised below we consider the wOrlds experiment to have been
successful. We have built a useful CSCW system that has been applied in several
different domains. We have been able to demonstrate that a non-action-centered approach
to CSCW support can indeed support both formal and cultural aspects of work and we
have learned an enormous amount about the subtleties of CSCW support that we simply
could never have learned without the hard practical experience of building and working
with a system such as wOrlds.

Most importantly, the experience of constructing wOrlds has allowed us to envision its
successor system: Orbit, in which we hope to answer many of our own criticisms. Where
appropriate we will counterpoint our critique of wOrlds with elements of the planned
design of Orbit.

7.1 Positive aspects of wOrlds

By their very nature critiques tend to focus on the negative; here we briefly point out
some of the many positive features of the wOrlds system.

Multimedia Rooms wOrlds demonstrated the many benefits of multimedia-based
interaction in locales, including the extensive and ubiquitous integration of audio and
video.

30

Shared Objects wOrlds users tend to make extensive use of the underlying shared-
distributed-objects-everywhere framework in the system, which supports the ability to
create rich tapestries of objects.

Contextual Action. Users found the ways in which wOrlds, especially the Introspect
aspects, supported contextual action a useful way of obtaining guidance and having
necessary actions at their fingertips.

Accessing People and Locales The ability to call people and glance into or warp to
locales is a continually-used feature of the system.

Integrating Mail & Web The seamless integration of email and the web, allowing one
to, for example, call someone from a web page or glance a locale from an email message
(or vice versa), is a very heavily used feature of the system.

External Object Integration wOrlds users could integrate external objects (files, etc)
with their shared ORB-based objects and make extensive use of this facility.

Navigation Facilities wOrlds provided a rich navigation tool for finding users and
locales which was much relied on by wOrlds users.

7.2 Theoretical issues

One way of thinking about wOrlds, and MUDs more generally, is that they are about
setting boundaries around spaces and then populating those spaces. While we have no
problem with populating spaces, we believe that the joint focus on setting boundaries and
on spaces are misplaced and lead to fundamental problers with collaboration support.
The body of this section really critiques wOrlds indirectly, through discussion of several
key concepts which are missing from wOrlds and many other MUD-like systems. In
many cases we do not have more than the broadest sense of possible solutions to these
issues, they are open problems for us at this time.

7.2.1 Idiosyncrasy and intensity

People are players in multiple social worlds at any point in their lives. The combination
of personal history and experience, intersecting social world memberships, and personal
desires, needs and goals all combine to mean that people tend to have highly
idiosyncratic views of the world. While this is well known, collaboration systems tend to
take very little account of this, giving only a fixed group view. Thus, our first criticism of
wOrlds is that it does not account for the idiosyncrasies of individuals, allowing each user
to build his or her individual view of the system, its locales, and the contents of the
locales themselves.

Further, while we are all members of different social worlds the intensity of that
membership is again highly idiosyncratic. In one situation one may be intensely involved,
and in another have only a passing interest or be interested only in a particular facet of

31

the activities of members of the social world. Our second criticism of wOrlds, thus, that it
does not allow for different individuals to participate in locales at differing degrees of
intensity: one is either “in” a locale or one is not.

7.2.2 Spaces and places

Like all MUDs, wOrlds provides a collection of “virtual spaces” in which users “gather”
to work together, utilizing whatever resources are available in the space. We believe this
emphasis on space is a tactical error on the part of CSCW systems designers. While there
are many situations in which modeling the physical in the virtual might have advantages,
such as modeling meeting rooms, lectures or conferences, there are many times when
trying to simulate the physical in the virtual might be positively debilitating.

The telephone is a fine example of this phenomenon. Telephones do not replace face-to-
face communication or provide a perfect substitute for it, instead they provide an
alternative means of communication, for which we have developed rich social protocols
and which have become a critical part of modern society. But thinking of a telephone as a
“space” seems ridiculous and there are many other affordances for communication and
collaboration that are not spaces, such as mail, fax machines, mailing lists and radio
stations and receivers.

We believe that a shift in focus from the purely spatial to a richer notion of place as the
basis for supporting collaboration will result in greater power and flexibility in CSCW
environments. Places, loosely defined, are collections of affordances with the potential
for supporting interaction and communication. Thus, places are a superset of spaces,
admitting a wider spectrum of possible bases for collaboration.

One immediate practical upshot of such a shift is that the “fundamental thing” we
conceive of collaboration systems as providing becomes much more dynamic. In MUDs,
for example, “everything is a room” in the end - the fundamental gathering place for
collaboration is the MUD room. In wOrlds, it is the locale, and so forth. While graphical
representations of rooms will continue to be useful for many situations, in a place-based
system users will be able to use any combination of affordances and representations they
see fit for the task at hand. Thus one group may choose to have intermittent AV
conferences with a whiteboard while another may choose to use a bulletin board and a
third could build an entire “situation room”, all to deal with the same problem.

7.2.3 Boundaries, permeability and awareness

People employ a multitude of simultaneous foci in their work. wOrlds and other room-
based systems provide rigid rooms with strong boundaries. This makes it very difficult to
work on “several things at the same time” or keep one’s eye on activities in one situation
while concentrating on another.

The essential problem here is that while rooms (and locales) have boundaries, social
worlds have centers. Rigid walls around rooms do not permit users to be sufficiently

32

aware of the activities in other spaces. Our challenge, therefore, is to build systems that
allow users to have several simultaneous, personalized foci of differing intensity that
support the seamless awareness and permeability among work activities which
characterize the real, workaday world.

7.2.4 History and trajectory

Finally, a major weakness with almost every collaboration system we know of is that
they do not deal well (if at all) with the issue of providing context through history (what
has already happened) and trajectory (what might be a good idea to do next).

To a very limited extent workflow systems do provide this in the sense that one can see
where one has been (the parts of the workflow that have been completed) and where one
might go next (the uncompleted parts of the flow). In (Bogia et al 1995), Doug Bogia
outlines a sophisticated and flexible collaboration model, called Obligations, which
provides both for histories and for several different kinds of flexible modifications to
workflows. However, no support is provided for capturing the cultural-level history and
trajectory of work. ’

We believe that one of the potential advantages of CSCW support is helping users more
quickly to acclimatize to new situations. Providing richer notions of history and trajectory
is a critical part of this, but at this time we have no ideas beyond Bogia’s work as to how
to proceed on this. Some possibilities would be to capture the video and audio in a locale,
and compress and index this in some way for easy recovery, but the technological
problems with storing and indexing vast quantities of (mostly boring) video remain huge.

1.3 Systems implications: abstract view

We do not have, as yet, any clear idea of how to build systems that meet this goal. In our
new system, Orbit, we plan to move from the current one-level architecture of wOrlds
(objects appear in locales, locales are strictly segmented, users can be in only one locale
at a time, and all users see the same view of the locale and its objects) to the more
sophisticated three-level architecture sketched in Figure 3. The three levels may be
summarized as follows:

7.3.1 Distributed object services

At the lowest level, Orbit should provide a collection of services of various kinds that can

“be used by workers to accomplish their tasks. Examples include shared, distributed
objects, AV conferences, resource discovery agents, tools, etc. This level would also
contain the infrastructural services, such as object distribution and replication, which
form the technological basis for the system.

33

7.3.2 Group/locale services.

In Orbit, locales are the places where social worlds can build shared collections of
distributed objects that are germane to the task they are trying to perform, available
network bandwidth, etc. A locale should be thought of as a shared “lens” which brings
certain of the facilities at the lower level together. This level will also contain the services
for editing and maintaining locale definitions and processes.

7.3.3 Individual services

Where the distributed services level allows the definition of particular services, objects,
etc., and the group/locale level allows the definition of shared group views over subsets
of the information at the affordance level, shared processes, etc., the individual services
level allows users to define the ways in which they will view and interact with the many
locales in which they participate. Unlike wOrlds, which imposed strict boundaries among
locales, in Orbit the user will be able to hold information from multiple locales in focus
simultaneously, with differing degrees of intensity, and switch easily from one to another.

Naturally the question of how exactly to build a system like Orbit remains open. We will
report on our progress in future papers.

7.4 Systems implications: technological view

The issues raised here are those which have presented the wOrlds implementation team
with fundamental difficulties or obstacles, as opposed to problems which are, in one way
or another, related to particular implementation choices.

7.4.1 Distributed objects

The ability seamlessly to manipulate local and distributed objects is fundamental to the
construction of any complex CSCW system. We chose to investigate ORB technology as
the basis for the distributed object model in wOrlds. The choice seemed sound - ORBs
are built to a standard model, that support the interoperability of systems, languages and
machines, and they are the vehicle of choice for many distributed systems researchers and
developers. However, we have identified several significant shortcomings with ORB-
based distributed object systems which greatly hinder our ability to build a truly scalable
collaboration support environment.

7.4.2 Internet instability and ORB reliability.

The Internet provides an extremely unstable networking framework, while ORBs are
architected on the assumption that interaction among the various servers providing access .
to distributed objects is reliable and stable. This creates a fundamental mismatch that
makes it extremely difficult to deploy ORB technology over anything other than local
area networks (or dedicated wide-area networks with considerable bandwidth). Since the

34

Internet is not likely to become any more stable in the near future, ORB services that
support reliable access to objects is absolutely essential.

7.4.3 Replication

One way that the reliability-of-access issue can be mitigated is to replicate information in
many sites. Systems can then concentrate on accessing local data, or have several
alternate paths to data, while the underlying replication service takes care of duplicating
objects around the network as required. While this sounds very attractive, ORBs support
no replication services, and indeed no general replication solutions exist. We believe that
the solution to this problem lies not in developing the perfect replication algorithm as
every situation could potentially require different replication strategies, but rather to build
a replication framework and associated specification environment (rather like Introspect)
which allows the development and evolution of many replication strategies.

7.44 Adaptability and quality of service

wOrlds should be capable of adapting to changing resource availabilities and different
quality-of-service (QoS) demands. wOrlds is built almost exclusively from off-the-shelf
components, which provide no facilities for automatically adapting to changing QoS
demands, or adapting to changing resources. The entire area of adaptable interfaces
which can deal with changes of these kinds remains open, but solutions are critically
‘required in our domain. Obviously any solutions to these problems are going to be
closely related to solutions to the problems outlined above..

8 Related work .

As we pointed out above, the work most similar to our own is the development of MUDs,
such as MediaMOO (Bruckman and Resnick 1993). The major similarity is that MUDs,
like wOrlds, reflect the view that the appropriate role of the computer is to provide a
setting where users can interact as freely as possible, albeit with text-based interfaces.
MUD:s also partition the space of interaction. Rooms in MUDs have similar qualities to
wOrlds locales: sharing is encapsulated by the boundaries of the room, rooms typically
have a purpose and furnishings. Curtis and Nichols’ Jupiter adds video-conferencing to
the basic MUD providing comparable affordance for informal communication. A key
difference is that MUDs are generally implemented on a central server, whereas wOrlds
is distributed.

Virtual reality teleconferencing systems such as MASSIVE (Greenhalgh and Benford
1995) and DIVE (Genford and Fahlen 1993) are obviously similar to wOrlds in
supporting partitions of the space of interaction and informal, multi-participant, multi-site
conferencing. They focus primarily on enabling mixed-media conferencing between
multiple participants using heterogeneous interfaces (either text or graphics) and
supporting informal intuitions of interaction in a graphically-rendered, non-video system.

35

These systems provide only extremely limited support for distributed shared objects and
integrated shared tools, and make no attempt to model formal work activities.

wOrlds also owes a debt to the development of media spaces specifically at PARC,
EuroPARC and Sun, but it extends the basic media space concept with shared objects,
locales and many other features. Shared document systems such as GroupDesk (Fuchs et
al 1995) and BSCW (Bentley and Dourish 1995) provide useful abstractions for
cooperative work based around documents, DIVA (Sohlenkamp and Chwelos 1994) adds
a notion of rooms and shared audio-video conferencing.

Although we have focused on Strauss’ social worlds model as the basis for our
investigations, this work does not exist in isolation. A significant portion of the
theoretical work in the CSCW community is, by and large, in fundamental alignment
with Strauss’ approach, even if the social worlds of the researchers may not overlap. For
examples, see (Bowers et al 1995, Robonson 1993, Schmidt 1994, Starr and Ruhleder
1994).

9 Conclusions

The success of the wOrlds project notwithstanding, for us the real value of this project
has been the complex of difficult issues which the project has opened up. On the
theoretical front it has exposed us to the subtleties of social worlds as a way of
understanding group interactions and raised many issues concerning appropriate support
for social world interactions through the computer. Building wOrlds has led to the
uncovering of a range of issues concerning distributed systems infrastructure. We believe
that the successful future of CSCW systems depends in no small_part on finding solutions
to these problems.

10 Acknowledgments

This work has been supported by the National Science Foundation under grants CDA-
9401124, CCR-9108931 and CCR-9007195, the Defense Advanced Research Projects
Agency under grant F30603-94-C-0161, the US Army Corps of Engineers Research
Laboratory, Fujitsu Open Systems Solutions Inc., Intel, Bull, Sun Microsystems, Hewlett-
Packard, Digital Equipment and the Department of Computer Science of the University
of Queensland. The work reported in this paper has also been funded in part by a Co-
operative Research Centre Program through the Department of the Prime Minister and
Cabinet of Australia. Geraldine Fitzpatrick has received additional support through an
Australian Postgraduate Research Award and an Australian Telecommunications and
Electronics Research Board scholarship.

The views and conclusions expressed in this document are those of the authors and
should not be interpreted as representing the official policies, expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

36

Online information about the wOrlds project, systems availability and references to the
technology referred to in this paper can be obtained from:
http://www dstc.edu.au/TU/wOrlds/

11 References

Abbott, K. and Sarin, S. (1994). Experiences with workflow management: Issues for the
next generation. Proceedings ACM Conference on Computer Supported Cooperative
Work (CSCW), Chapel Hill, NC, pp 113-120, October 1994.

Benford, S. and L. Fahlen (1993). A Spatial Model of Interaction in Large Virtual
Environments. Third European Conference on Computer-Supported Cooperative Work
(ECSCW 93), Milan, Italy, Kluwer Academic Publishers.

Bentley, R. and P. Dourish (1995). Medium Versus Mechanism: Supporting
Collaboration through Customization. Fourth European Conference on Computer-
Supported Cooperative Work, Stockholm, Sweden, Kluwer Academic Publishers.

Bogia, D., Tolonw, W. Kaplan, S. and de la Tribouille, E. (1993), Supporting Dynamic
Interdependencies among Collaborative Work Activities, Proceedings ACM Conference
on Organizational Computing Systems, Milpitas, CA, pp 108-118.

Bogia, D. P. (1995). Obligations: Flexible Support for Dynamic Workflows. Computer
Science Department,. Urbana, IL, USA, University of Ilinois.

Bowers, J., G. Button, et al. (1995). Workflow from Within and Without: Technology
and Cooperative work on the Print Industry Shopfloor. Fourth European Conference on
Computer-Supported Cooperative Work (ECSCW 95), Stockholm, Sweden, Kluwer
Academic Publishers.

Bruckman, A. and M. Resnick (1993). Virtual Professional Community: Results from the
MediaMOO Project. Third International Conference on Cyberspace, Austin, TX. '

Burnett, M (1993), Types and Type Inference in a Visual Programming Language,
Proceedings IEEE Symposium on Visual Languages, Bergen, Norway, 1993.

Curtis, P. and D. A. Nichols (1994). MUDs Grow Up: Social Virtual Reality in the Real
World. 1994 IEEE Computer Conference, IEEE Press.

Dourish, P. (1993). Culture and Control in a Media Space. Third European Conference
on Computer-Supported Cooperative Work (ECSCW 93), Milan, Italy, Kluwer Academic
Publishers.

Ellis, C. and Bernal, M. (1982). OfficeTalk-D: An experimental Office Information
System, Proceedings ACM SIGOA Conference on Office Information Systems, pp 131-
140, June 1982.

37

Fitzpatrick, G., W. J. Tolone, et al. (1995). Work, Locales and Distributed Social Worlds.
Fourth European Conference on Computer-Supported Cooperative Work, Stockholm,
Sweden, Kluwer Academic Publishers.

Fuchs, L., U. Pankoke-Babatz, et al. (1995). Supporting Cooperative Awareness with
Local Event Mechanisms. Fourth European Conference on Computer-Supported
Cooperative Work, Stockholm, Sweden, Kluwer Academic Publishers.

Gaver, W. W., G. Smets, et al. (1995). A Virtual Window on Media Space. Conference
on Human Factors in Information Systems (CHI 95), Denver, Co, ACM Press.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. New York,
Houghton-Mifflin.

Greenhalgh, C. and S. Benford (1995). Virtual Reality Tele-Conferencing:
Implementation and Experience. Fourth European Conference on Computer-Supported
Cooperative Work, Stockholm, Sweden, Kluwer Academic Publishers.

Group, O. M. (1995). The Common Object Request Broker: Architecture and
Specification Revision 2.0, Object Management Group, Inc.

Harel, D. (1988). On visual formalisms. Communications of the ACM 31(5), pp 514-530,
May 1988.

Kaplan, S. M., W. J. Tolone, et al. (1992). Flexible, Active Support for Collaborative
Work with ConversationBuilder. ACM Conference on Computer-Supported Cooperative
Work (CSCW 92), Toronto, Canada, ACM Press. :

Kellner, M., Feiler, P., Finkelstein, A., Katayama T., Osterweil L, Penedo M., and
Rombach H., Software Process Example for ISPW 7. Proceedings 7% International
Software Process Workshop, IEEE Press, Yoountville, CA, 1991.

Kogan, D. (1993). Design and Implementation of CB Lite. ACM Conference on
Organizational Computing Systems (COOCS 93), Milpitas, CA, ACM Press.

Maes, P. (1987). Concepts and Experiments in Computational Reflection. ACM
Conference on Object Oriented Programming Languages and Systems (OOPSLA), pp
147-155. October 4-8, 1997.

Medina-Mora, R., T. Winograd, et al. (1992). The Action Workflow Approach to
Workflow Management Technology. ACM Conference on Computer-Supported
Cooperative Work (CSCW 92), Toronto, Canada, ACM Press.

Robinson, M. (1991). “Double-Level Languages and "Cooperative Working.” Al and
Society 5: 34-60.

- 38

Robinson, M. (1993). Design for Unanticipated Use. Third European Conference on
Computer-Supported Cooperative Work (ECSCW 93), Milan, Italy, Kluwer Academic
Publishers.

Schmidt, K. (1994). The Organization of Cooperative Work: Beyond the ’Leviathan’
Conception of the Organization of Cooperative Work. ACM Conference on Computer-
Supported Cooperative Work (CSCW 94), Chapel Hill, NC, ACM Press.

Sohlenkamp, M. and G. Chwelos (1994). Integrating Communication, Cooperation and
Awareness: The DIVA Office Environment. ACM Conference on Computer-Supported
Cooperative Work (CSCW 94), Chapel Hill, NC, ACM Press.

Starr, S.-L. and K. Ruhleder (1994). Steps Towards and Ecology of Infrastructure:
Complex Problems in Design and Access for Large-Scale Collaborative Systems. ACM
Conference on Computer-Supported Cooperative Work (CSCW 94), Chapel Hill, NC,
ACM Press.

Strauss, A. (1993). Continual Permutations of Action. New York, Adeline De Gruyter.
Suchman, L. (1987), Plans and Situated Actions, Cambridge University Press.

Suchman, L. (1993). Do Categories Have Politics: The Language/Action Perspective
Reconsidered. Third European Conference on Computer-Supported Cooperative Work
(ECSCW 93), Milan, Italy, Kluwer Academic Publishers.

Swenson, K. (1993). Visual Support for Reengineering Work Processes. ACM
Conference on Organizational Computing Systems (COOCS 93), Milpitas, CA, ACM
Press. '

Tang, J., E. Isaacs, et al. (1994). Supporting Distributed Groups with a Montage of
- Lightweight Interactions. ACM Conference on Computer-Supported Cooperative Work
(CSCW 94), Chapel Hill, NC, ACM Press.

Tolone, W. J., S. M. Kaplan, et al. (1995). Specifying Dynamic Support for Collaborative
Work within wOrlds. ACM Conference on Organizational Computing Systems (COCS
95), Milpitas, CA, ACM Press.

Winograd, T. and F. Flores (1986). Understanding Computers and Cognition. Reading,
New York, Addison-Wesley.

Zisman, M. (1977). Representation, Specification and Automation of Office Procedures,
PhD Thesis, Wharton School, University of Pennsylvania.

39

JISTRIBUTICN LIST

addresses

JAMES MILLIGAN
825 2RAGKS RD
R3ME MY 13441-4505

UNIV OF ILLINCIS JURZANA-CHAMPATGN
DEPT JF COMPUTER SCTIENCE

1304 se SPRINGBFIELYD AVE

UR3IANA IL £18C1-~-2387

AFRL/IFIIL
TECHNICAL LIARARY
25 ELECTRINIC PKY
ROME NY 13441-6314

ATTENTION: ODTIC-3CC)
DESENST TECHNICAL INFD CCNTER

2725 JOHN J. KINGH4AN RECAD, STZ 0944
FTe 3ELVOIR, VA 22060-£218

NEFENST AOVANCEID RESEARCH

PRIJECTS AGENCY

3771 NORTH FAIRFAX DRIVE

"ARLINGTON VA 22203-1714

ATTHNT NMAN PFRIMMER

TIT RESEARCH INSTITUTE
2291 MILL ST.

ROME, NY 13440

AFI CA2ZHIC LIT?4RY
AFIT/LDR, 2350 P.STREZTY
AREA Sy ALD3 o042

NRIGHT=PATTER3IN AF3 34 45433-7755

AFRL/ZALMS
2377 P STREET, 3TZ 4
WRIGHT=-PATTENS2H A=3 ZIH 45433-7723

3L-1

number
of rcopiles

).

[

AFRL/HTSC-TODC
2598 5 STREET, 3LDG 133
WRIGHT-PATTZRSON AF3 OH 45433-7404

ATTN: SMDC IM PL

YS ARMY SPACE & MISSILE DEF CMD
P.0. 80X 1500

HUNTSVILLE AL 35807-3801

TECHNICAL LIBZRARY DO274(PL-TS)
SPAWARSYSCZEN

53560 HULL ST.

SAN 2IZG0 CA 32152-5001

COMMANDER, CCDE 4TLQCUD
TECHNICAL LI3RARY, NAWC=-WD
1 ADMINISTRATIIN CIRCLE
CHINA LAKE CA 93555-5100

Co%, US ARMY AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATIOM CTR
ATTN: AMSAM-RD-(0B-R, (DCOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORIT LIBRARY

M35 P304

LOS ALAMDS NATIONAL LABORATORY
L0S ALAMIS NM 87545

ATTN: D'83RAH HART
AVIATION BRANCH SVC 122.1°0
FO0B104A, RM 331

R00 INDEPENDENWCE AVE, SW
WASHINGTION 3C 29591

AETIWC/MSY
102 HALL 3LVD, STE 315
SAYM ANTOMID TX 78243-701%

ATTNS KARZLA M. YOURISON
SIFETWARE EZNGIMITZRING INSTITUTE
4500 FIFTA AVENUF

PITTSBURGH PA 1521

Py

[T

JSEF/&TR F2RCE RESTARCH LABDRATIRY
AFPL/VSOSACLI3RARY-3LDG 1103)

5 JRIGHT DRIVE '
HANSCOM AF3 MA 01731-300¢

ATTN: ZILEZEN LADUKE/D44D
MITRE CJORPIRATION

202 3URLINGTON RD

BEDFIRD MA 01730

gqusD(PI/DTSA/DUTD

ATTN: PATRICK 5. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITZ 309

ARLINGTON VA 22202

oL-

[*Y]

[y

e

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent informatiqn systems

technologies.

